Source code for qmlearn.api.api4ase

import numpy as np
from ase.calculators.calculator import Calculator, all_changes
from ase.units import Ha, Bohr


[docs]class QMLCalculator(Calculator): r""" Mean QML calculator Attributes ---------- qmmodel : QMMol object Reference QMMol object method : str Options | 'gamma' : Use QMLearn learning proccess to predict the desire property. | 'engine' : Use PySCF engine to predict the desire property. properties : list:str Options | 'energy' : Energy | 'forces' : Forces | 'dipole' : Dipole | 'stress' : Stress | 'gamma' : 1-RDM """ implemented_properties = ['energy', 'forces', 'dipole', 'stress', 'gamma'] def __init__(self, qmmodel = None, second_learn = {}, method = 'gamma', label='QMLearn', atoms=None, directory='.', refqmmol = None, properties = ('energy'), **kwargs): Calculator.__init__(self, label = label, atoms = atoms, directory = directory, **kwargs) self.qmmodel = qmmodel self.second_learn = second_learn self.method = method self._refqmmol = refqmmol self._properties = properties @property def refqmmol(self): r"""QMMol object. """ if self._refqmmol is None : if hasattr(self.qmmodel, 'refqmmol'): return self.qmmodel.refqmmol else : # qmmodel is refqmmol return self.qmmodel return self._refqmmol @refqmmol.setter def refqmmol(self, value): self._refqmmol = value @property def properties(self): if not isinstance(self._properties, set): self._properties = set(self._properties) return self._properties @properties.setter def properties(self, value): self._properties = value
[docs] def calculate(self, atoms=None, properties=('energy'), system_changes=all_changes): r""" Function to calculate the desire properties. Parameters ---------- properties : list:str Options | Energy : 'energy' | Forces : 'forces' | Dipole : 'dipole' | Stress : 'stress' | 1-RDM : 'gamma' """ properties = set(properties) | self.properties Calculator.calculate(self,atoms=atoms,properties=properties,system_changes=system_changes) atoms = atoms or self.atoms self.results['stress'] = np.zeros(6) if self.method == 'engine' : qmmol = self.refqmmol.duplicate(atoms, refatoms=atoms) self.calc_with_engine(qmmol, properties=properties) else : if self.method == 'gamma' : qmmol = self.refqmmol.duplicate(atoms.copy()) self.calc_with_gamma(qmmol, properties=properties) else : raise AttributeError(f"Sorry, not support '{self.method}' now.")
[docs] def calc_with_gamma(self, qmmol, properties = ['energy']): r""" Function to calculate the desire properties using QMLearn learning process. Parameters ---------- properties : list:str Options | Energy : 'energy' | Forces : 'forces' | Dipole : 'dipole' | Stress : 'stress' | 1-RDM : 'gamma' """ shape = self.qmmodel.refqmmol.vext.shape gamma = self.qmmodel.predict(qmmol).reshape(shape) m2 = self.second_learn.get('gamma', None) if m2 : gamma2 = self.qmmodel.predict(gamma, method = m2).reshape(shape) else : gamma2 = gamma if 'energy' in properties : m2 = self.second_learn.get('energy', None) if m2 : energy = self.qmmodel.predict(gamma, method=m2) self.results['energy'] = energy * Ha else : energy = qmmol.calc_etotal(gamma2) self.results['energy'] = energy * Ha if 'forces' in properties: m2 = self.second_learn.get('forces', None) if m2 : forces = self.qmmodel.predict(gamma, method=m2) else : forces = qmmol.calc_forces(gamma2) forces = self.qmmodel.convert_back(forces, prop='forces') self.results['forces'] = forces * Ha/Bohr # forces_shift = np.mean(self.results['forces'], axis = 0) # print('Forces shift :', forces_shift, flush = True) # self.results['forces'] -= forces_shift if 'dipole' in properties : m2 = self.second_learn.get('dipole', None) if m2 : dipole = self.qmmodel.predict(gamma, method=m2) else : dipole = qmmol.calc_dipole(gamma2) dipole = np.dot(dipole, qmmol.op_rotate_inv) self.results['dipole'] = dipole * Bohr if 'stress' in properties: self.results['stress'] = np.zeros(6) if 'gamma' in properties : gamma = self.qmmodel.convert_back(gamma2, prop='gamma') self.results['gamma'] = gamma
[docs] def calc_with_engine(self, qmmol, properties = ('energy')): r""" Function to calculate the desire properties using PySCF engine. Parameters ---------- properties : list:str Options | Energy : 'energy' | Forces : 'forces' | Dipole : 'dipole' | Stress : 'stress' | 1-RDM : 'gamma' """ qmmol.engine.run(properties = properties) if 'energy' in properties : energy = qmmol.engine.etotal self.results['energy'] = energy * Ha if 'forces' in properties: forces = qmmol.engine.forces self.results['forces'] = forces * Ha/Bohr if 'stress' in properties: self.results['stress'] = np.zeros(6) if 'dipole' in properties : dipole = qmmol.calc_dipole(qmmol.engine.gamma) self.results['dipole'] = dipole * Bohr if 'gamma' in properties : self.results['gamma'] = qmmol.engine.gamma